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1. Introduction

Inclusive B̄ → Xcℓν̄ decays are a precise probe of the underlying b- to c-quark transition

because hadronisation effects are small and have a simple structure. These effects are

suppressed by powers of the heavy-quark mass and given in terms of a small number of

non-perturbative parameters. In the heavy-quark limit, the hadronic decay rate becomes

equal to the partonic decay rate. The leading corrections are of order 1/m2
b and are given in

terms of two non-perturbative heavy-quark parameters, µ2
π and µ2

G, which are the B-meson

matrix elements of the kinetic and chromo-magnetic operator respectively. Schematically,

the decay rate takes the form [1 – 4]

Γ(B̄ → Xcℓν̄) =
G2

F |Vcb|2m5
b

192π3

{

f(ρ) + k(ρ)
µ2

π

2m2
b

+ g(ρ)
µ2

G

2m2
b

+ O(m−3
b )

}

, (1.1)

where ρ = m2
c/m

2
b . The coefficients f , g and k can be calculated in perturbation theory:

f = f (0)(ρ) +
αs

π
f (1)(ρ) +

(αs

π

)2
f (2)(ρ) + O(α3

s) , etc. (1.2)

The general structure of the expansion is the same for other observables, such as partial

rates or moments of the decay spectrum, but the calculable coefficients f , g and k are

different. For the total rate the kinetic corrections have the same coefficient as the leading

order, k(ρ) = −f(ρ), as was noticed already in [5]. Also for other observables, such as

partial rates and moments, the kinetic corrections can be obtained from the leading-power
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differential rate, but the relations are more complicated and are evaluated to O(αs) for the

first time in this paper.

To turn (1.1) into a precision determination of |Vcb| one needs the values of mb, mc

and the heavy-quark parameters. Since the same parameters enter moments of the decay

spectrum, one can determine these parameters by measuring not only the rate, but also a

number of moments. To this end, lepton energy moments and hadronic invariant mass and

energy moments are measured [6 – 13]. Using the results of these measurements, several

groups have performed fits of the theoretical expressions to the experimental data [14 –

17]. The theoretical expressions that are used in the fit include one-loop corrections to

the leading-power coefficients f(ρ) [18 – 27] as well as the β0α
2
s-part of the two-loop correc-

tions [27 – 31], while the coefficients g(ρ) and k(ρ) of the power corrections are known only

at the tree level. In addition to the second-order power corrections proportional to µ2
π and

µ2
G, the fits also include the third-order power corrections, which involve two additional

hadronic parameters, ρ3
D and ρ3

LS [32] (the fourth order corrections are now available as

well [33]). This technique yields the most precise determination of |Vcb| together with very

precise determinations of the heavy-quark masses. Already now, the estimated theoretical

uncertainties are somewhat larger than the experimental ones [16]. In the future the exper-

imental uncertainty will decrease further: the BaBar moment measurements which were

used in [15, 16] were published in 2004 and are based on 50 fb−1 of data [6, 7],1 and the

recently published Belle measurements on 140 fb−1 [12, 13], but combined the two experi-

ments have already collected more than 1 ab−1 of data. Also, based on the convergence of

the perturbative series of the rate for τ -decay and based on the size of the two-loop contri-

butions that arise when converting the theoretical expressions between different schemes

used in the literature, it has been suggested that the theoretical uncertainties in the results

of the moment fits might be underestimated [35]. Whether the uncertainties are reliable is

an important question because the value of mb extracted from the fit is a crucial ingredient

for the determination of |Vub| from inclusive decays. After imposing the severe cuts neces-

sary to eliminate the charm background, the prediction for the B̄ → Xuℓν̄ rate behaves as

mn
b with n ≈ 10 − 15 [36, 37]. The value and uncertainty of the extracted |Vub| are thus

strongly correlated with the value and uncertainty of mb.

It is clearly desirable to increase the precision of the theoretical predictions. To achieve

this goal, two ingredients are needed: the leading-power moments have to be evaluated to

two-loop accuracy, and the coefficients of the power corrections proportional to µ2
π and

µ2
G need to be evaluated to one loop. In this paper we take the first and simplest step

in this direction by evaluating the coefficient of the kinetic operator to one-loop accuracy.

Let us stress that, while it is demanding, also the O(α2
s) calculation of the leading-power

moments is doable. A few years ago such a calculation looked prohibitively difficult, but in

the meantime the necessary methods to perform it numerically have been developed [38,

39]. Indeed, the two-loop correction for muon decay µ → Xeνν̄, the QED equivalent of

B̄ → Xcℓν̄, has been evaluated recently using this method [40]. We use the same numerical

approach for our one-loop calculation, because the size of the expressions involved is such

1Very recently, Babar has presented preliminary results for hadronic moments based on 210 fb−1 [34].

– 2 –



J
H
E
P
1
2
(
2
0
0
7
)
0
6
2

that an analytic calculation does not look feasible. Since the method is gauge invariant

(we perform the calculation without introducing a gluon mass), it is also suited for the

calculation of the corrections to the coefficient of the chromomagnetic operator.

The kinetic corrections are obtained by expanding the leading-power O(αs) expressions

up to second order in the small residual momentum of the b-quark inside the B-meson. To

have a check of our results, we perform the calculation in two different ways. A straightfor-

ward and tedious way of obtaining the kinetic corrections is to expand the leading-power

Feynman diagrams in the residual momentum before performing the loop and phase-space

integrations. The resulting expressions are long and involve terms which are individually

strongly infrared divergent. Another complication arises because the expansion produces

not only standard phase-space integrals, but also derivatives of such phase-space integrals,

which arise from cutting higher powers of propagators. A much more elegant and efficient

way to perform the calculation is to expand the result for the leading-order differential

rate in the residual momentum. In this way one obtains results for the moments in terms

of integrals over the leading-power rate and its derivative. In fact, without experimental

cuts one obtains simple algebraic relations between the kinetic corrections and the leading-

power moments. As a byproduct of our analysis, we obtain the O(αs) corrections to the

leading-power moments and reproduce the numerical results of [27].

As the two-loop corrections to the leading-power rate and the one-loop corrections to

the µ2
G terms are not yet available, it is too early to perform a detailed phenomenological

analysis. Instead, we present numerical values for a few reference values of the electron

energy cut. For the moments which do not vanish, the corrections we calculate turn out

to be small, below 1% as long as the cut on the lepton energy is not too strong. For the

moments of the partonic invariant mass (p2
x − m2

c)
n, on the other hand, which vanish at

the tree-level and leading power, the corrections are larger, of order 30%. We expect the

corrections proportional to µ2
G to be more important than the kinetic corrections. For the

tree-level rate, they are roughly a factor ten larger than the kinetic corrections.

This paper is organized as follows. In the next section, we explain how the kinetic

corrections are calculated using the operator product expansion (OPE). In section 3 we

give parameterizations for the phase-space and loop integrals which are needed to perform

the calculation. These parameterizations map the integration onto the unit hypercube

and are such that infrared divergences appear only in a single variable and can be isolated

before performing the numerical integration. We present our numerical results in section 4.

In the same section, we give formulae for the conversion of partonic to hadronic moments.

We also discuss how to convert our results into different schemes, such as the kinetic [41],

potential-subtracted [42], 1S [43] or the shape-function scheme [44].

2. Evaluation of the kinetic corrections

In this section we briefly explain how we evaluate the B̄ → Xcℓν̄ decay rate using the OPE.

The application of the OPE to inclusive B decays has been worked out quite some time

ago and the reader interested in more details should consult the original references [1 – 4]

or the textbook [46]. Our goal in this section is to outline the necessary steps to obtain
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the result and to discuss some of the technicalities which are encountered in the course of

the one-loop calculation. The reader solely interested in the numerical results can skip to

section 4.

The B̄ → Xcℓν̄ decay is mediated by the effective Hamiltonian

Heff =
GF√

2
Vcb Jµ Jℓ

µ =
GF√

2
Vcb c̄ γµ (1 − γ5) b ℓ̄ γµ (1 − γ5) ν . (2.1)

The decay rate factors into a leptonic tensor Lµν and a hadronic tensor Wµν

dΓ =
G2

F |Vcb|2
2

dµ(pℓ) dµ(pν)Lµν(pℓ, pν)W
µν(pB , q) , (2.2)

where q = pℓ + pν and dµ(p) denotes the phase space

dµ(p) =
dd−1p

(2π)d−1 2E
(2.3)

in d = 4 − 2ǫ dimensions. Since the differential rate is a finite quantity, we could set

d = 4. However, individual contributions to the hadronic tensor contain ultra-violet (UV)

as well as infrared (IR) divergences which we regulate by keeping ǫ 6= 0 throughout. The

spin-averaged leptonic tensor is

Lµν = Tr [p/ℓ γµ(1 − γ5) p/νγν(1 − γ5)] . (2.4)

The hadronic tensor is obtained by taking the imaginary part of the time-ordered products

of currents

Wµν = −2 Im Tµν , (2.5)

where

Tµν = −i

∫

d4qe−iqx 1

2MB
〈B̄(pB)|T

[

J†
µ(x)Jν(0)

]

|B̄(pB)〉 . (2.6)

We work in the kinematics pµ
B = MBvµ and our states are canonically normalized. In

analytic calculations the hadronic tensor is usually decomposed into five form factors, but

we prefer to directly evaluate the relevant product WµνL
µν . Since we use dimensional

regularization we need to specify how we treat γ5 in d dimensions. A definition of the

axial current in d dimensions suitable for our purposes has been given by Larin [45] and

we adopt it for our calculation.

The operator product appearing in (2.6) is expanded in a series of local operators

which corresponds to an expansion of the rate in inverse powers of the b-quark mass. To

perform the expansion, one first removes a rapidly oscillating factor from the b-quark field

by writing it as b(x) = e−imbvxbv(x). Using heavy-quark effective theory (HQET) [47, 46],

all the matrix elements necessary to second order in the expansion can be reduced to

〈O3〉 ≡
1

2MB
〈B̄(pB)| b̄v v/ bv |B̄(pB)〉 = 1 ,

〈Okin〉 ≡
1

2MB
〈B̄(pB)| b̄v(iD)2bv |B̄(pB)〉 = −µ2

π , (2.7)

〈Omag〉 ≡
1

2MB
〈B̄(pB)| b̄v

g

2
σµνGµνbv |B̄(pB)〉 = µ2

G .
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The HQET parameter µ2
π is often denoted by −λ1 and is not renormalized. Up to terms

suppressed by three powers of the heavy-quark mass, the decay rate thus takes the form

dΓ =
G2

F |Vcb|2
2

dµ(pℓ)dµ(pν)
[

C3(v, pℓ, pν)〈O3〉

+Ckin(v, pℓ, pν)〈Okin〉 + Cmag(v, pℓ, pν)〈Omag〉
]

.

The Wilson coefficients Ci(v, pℓ, pν) of the three operators are independent of the exter-

nal states and can be calculated using partonic initial and final states. To extract the

coefficient Ckin(v, pℓ, pν) of the kinetic operator, it is simplest to use an on-shell b-quark

with momentum pb = mbvµ + rµ, which amounts to calculating the partonic decay rate

b → Xcℓν̄. To find the coefficient of the operator Okin with two derivatives, we expand the

partonic rate to second order in the residual momentum rµ. The result takes the form

dΓpartonic = A + Aµ
1

mb
rµ + Aµν

1

m2
b

rµrν + O(r3) . (2.8)

At the loop level, the question arises whether to expand the diagrams before or after

the loop integration. In general, either choice is valid as long as one evaluates the loop

corrections to the operator product and to the matrix elements of the local operators

Oi in the same way. In our case the situation is especially simple: since we perform the

matching calculation on-shell, the one-loop corrections to the HQET matrix elements of the

operators Oi vanish and the loop integration commutes with the expansion in the residual

momentum. To have a check of our results, we evaluate the corrections in both ways.

We can further simplify the calculation by averaging over the direction of the transverse

momentum rµ
⊥ = rµ−v·r vµ. The component parallel to vµ is fixed by the on-shell condition

2mbv · r = −r2. Taking the average we have

dΓpartonic = A − Aµ vµ r2

2m2
b

+ Aµν
r2

m2
b

1

d − 1
(gµν − vµvν) + O(r3) . (2.9)

To obtain the hadronic rate, we first bring the leading-power partonic matrix element into

the form (2.7) by rewriting

〈b(pb)| b̄v bv |b(pb)〉 =
1

mb
〈b(pb)| b̄v p/b bv |b(pb)〉

= 〈b(pb)| b̄v v/ bv |b(pb)〉 +
r2

2m2
b

〈b(pb)| b̄v bv |b(pb)〉 . (2.10)

We then replace the partonic matrix elements by the corresponding hadronic matrix ele-

ments:

dΓ =A
1

2MB
〈B̄(pB)| b̄v v/ bv |B̄(pB)〉

+

[

A − Aµ vµ + Aµν
2

d − 1
(gµν − vµvν)

]

1

2MB
〈B̄(pB)| b̄v (iD)2bv |B̄(pB)〉 + . . .

=A − µ2
π

2m2
b

[

A − Aµ vµ + Aµν
2

d − 1
(gµν − vµvν)

]

+ . . . . (2.11)
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mbv + rmbv + r

q q

mbv + r − q

Figure 1: Tree-level contribution to the hadronic tensor.

The ellipsis denotes terms which are suppressed by m−3
b or proportional to µ2

G. The op-

erator Omag has a vanishing b-quark matrix element and its coefficient is therefore not

determined by our matching calculation.

To illustrate the structure of the result, we now calculate the kinetic corrections at

tree level. The tree-level contribution to the hadronic tensor is shown in figure 1. Taking

its imaginary part and contracting with the leptonic tensor, the partonic tree-level rate is

found to be

dΓpartonic = 32G2
F |Vcb|2 dµ(pℓ) dµ(pν) pb · pν (pb − q) · pℓ (2π) δ((pb − q)2 − m2

c) . (2.12)

We now expand up to second order in the residual momentum rµ, average over the ⊥-

direction and replace the partonic by the hadronic matrix elements to obtain the result

dΓ = 64π G2
F |Vcb|2 dµ(pℓ) dµ(pν)

[

f0 δ
(

p2
c−m2

c

)

+f1 δ′
(

p2
c−m2

c

)

+f2 δ′′
(

p2
c−m2

c

)

]

, (2.13)

where pc = mbv − q and

f0 = mbv · pνpc · pℓ +
µ2

π

2m2
b

mb

3

[

5mbv · pℓv · pν − 2mb pℓ · pν

]

,

f1 =
µ2

π

3

[

v · pcv · pν (2mbv + 5pc) · pℓ − pc · pℓ (5mbv + 2pc) · pν

]

,

f2 = 2µ2
π mb v · pνpc · pℓ

[

(v · pc)
2 − p2

c

]

.

The one-loop results for the rate have a similar structure, also in this case the result

contains δ(n)
(

p2
c − m2

c

)

with n = 0, 1, 2. To calculate moments of the decay spectrum, we

introduce an integration over the partonic phase space

1 =

∫

dp2
x

(2π)

∫

dµ(px) (2π)d δd(mbv − q − px) . (2.14)

The result for the decay rate then takes the form

Γ =

∫

[dΠ] f0

∣

∣

∣

∣

m2
x=m2

c

− d

dm2
x

∫

[dΠ] f1

∣

∣

∣

∣

m2
x=m2

c

+
d2

d(m2
x)2

∫

[dΠ] f2

∣

∣

∣

∣

m2
x=m2

c

, (2.15)
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where we have used the notation
∫

[dΠ] ≡
∫

[dΠb→x+ℓ+ν̄] =

∫

dµ(px)

∫

dµ(pℓ)

∫

dµ(pν) (2π)dδd(mbv − px − pℓ − pν) .

(2.16)

It turns out that for the total rate the derivative terms in (2.15) do not contribute. However,

for partial rates or spectral moments these terms do give non-vanishing contributions.

To evaluate (2.15) numerically, we need a suitable parameterization for the phase-space

integral (2.16). The necessary parameterizations, both for the tree-level phase space and

the phase space with the emission of an additional gluon, needed for the O(αs) corrections

to the rate, are given in the next section.

An alternative, more elegant and efficient way of evaluating the kinetic corrections

was described in [46]. Instead of expanding the diagrams which contribute to the hadronic

tensor, one takes the result for the differential partonic rate and expands in the residual

momentum. To derive this result, it is convenient to introduce the dimensionless variables

x = 2Eν/mb, y = 2Eℓ/mb and q̂2 = q2/m2
b . When expanding in the residual momentum,

one has

x → x +
2

mb
r · pν y → y +

2

mb
r · pℓ q̂2 → q̂2 . (2.17)

Expanding to second order and averaging over the ⊥-direction, the hadronic differential

rate is equal to [46]

dΓ

dxdy dq̂2
=

[

1 +
µ2

π

2m2
b

(

−1 + x
∂

∂x
+ y

∂

∂y
+

1

3
x2 ∂2

∂x2
+

1

3
y2 ∂2

∂y2

+
2

3
(xy − 2q̂2)

∂2

∂x∂y

)]

dΓpartonic

dxdy dq̂2
. (2.18)

The µ2
π-term without derivatives comes from expanding the matrix elements, see (2.10).

What makes this result particularly useful is that we can explicitly evaluate the derivatives

using integration by parts when calculating moments. For the moments with a cut on the

lepton energy

[

xn ym (q̂2)l
]

y0

=

∫

dxdy dq̂2 dΓ

dxdy dq̂2
xn ym (q̂2)lθ(y − y0) , (2.19)

one finds
[

xn ym (q̂2)l
]

y0

=
[

xn ym (q̂2)l
]partonic

y0

(2.20)

+
µ2

π

6m2
b

[

(

(n+m)2+2m+2n−3
)

xn ym (q̂2)l−4m n xn−1 ym−1 (q̂2)l+1
]partonic

y0

+
µ2

π

6m2
b

[

(

(m + 2n + 1)xy0 − 4nq̂2
)

xn−1ym
0 (q̂2)l δ(y − y0)

+xnym+2
0 (q̂2)lδ′(y − y0)

]partonic
.

The terms in the third and fourth line are boundary terms and vanish when setting y0 = 0.

In this case the kinetic corrections to the moments follow via simple algebraic relations
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Figure 2: One-loop contributions to the hadronic tensor.

from the leading-power term. The explicit relations for the moments we are interested in

are given in appendix A. In the general case with a cut on the lepton energy y0 6= 0, one

needs to also evaluate moments of the partial rate and its first derivative. To evaluate

these boundary terms, it is important to keep in mind that q̂2, x and y are not completely

independent: the rate includes a factor θ(xy − q̂2) and at tree level the variables fulfill

1 − m2
c

m2

b

+ q̂2 = x + y. More generally, when choosing a phase-space parameterization to

evaluate (2.20), the variables q̂2 and x become functions of y and the derivative in the

fourth line of (2.20) then acts not only on the rate but also on the factors xa(q̂2)b.

3. Phase-space and loop integrals

We now derive phase-space representations which are well suited for the numerical calcu-

lation of the kinetic corrections at one loop. The diagrams contributing to the hadronic

tensor are shown in figure 2. Their imaginary part receives contributions from virtual

corrections as well as real-emission contributions. In the real-emission contributions, the

imaginary part of the diagram is generated by an intermediate state with an on-shell gluon

and on-shell charm quark, so we need a parameterization of the b → c + g + ℓ + ν̄ phase

space. The loop integrations necessary to evaluate the virtual corrections contain UV as

well as IR divergences. The real contributions are ultraviolet finite, but contain IR di-

vergences which cancel against the IR divergences of the virtual corrections. Because the

quarks are massive, soft gluons are the only source of infrared divergences at one loop.

To allow for a simple numerical evaluation, we map the phase-space and loop integra-

tions to the unit hypercube. Also, since we want to calculate the rate and spectral moments

with a cut on the lepton energy, we choose a parameterization in which the lepton energy

is one of the variables. A last requirement is that we want the infrared divergences to be

restricted to a single variable, so that they are easily isolated. It is convenient to split the

phase-space integral into a hadronic and leptonic part

∫

[dΠb→c+g+ℓ+ν̄] =

∫

dp2
x

2π

∫

[dΠb→x+ℓ+ν̄]

∫

[dΠx→c+g] . (3.1)

3.1 Three-body phase space b → x + ℓ + ν̄

We denote the phase-space integration variables by λi ∈ [0, 1] with i = 1 . . . 4. Neglecting

the lepton masses, we choose the momenta as

pb = (mb, 0, 0, 0) , pℓ = (Eℓ, 0, 0, Eℓ) , pν = (Eν , Eν sin θ1, 0, Eν cos θ1) , (3.2)

– 8 –
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and parameterize

Eℓ = mb
y

2
, Eν = mb

(1 − ρ − y) (1 − λ2)

2κ
, cos θ1 = 2λ3 − 1 , (3.3)

with

ρ =
m2

c

m2
b

, κ = 1 − (1 − cos θ1) y/2 . (3.4)

In terms of these quantities, the phase-space integral in d = 4 − 2ǫ reads

∫ m2

b

m2
c

dp2
x

2π

∫

[dΠb→x+ℓ+ν̄] (3.5)

=
Ωd−1Ωd−2 m4−4ǫ

b

2d+1(2π)2d−2

∫ 1−ρ

0
dy

∫ 1

0
dλ2dλ3(1−ρ−y)2−2ǫκ2ǫ−2 (y(1−λ2))

1−2ǫ ((1−λ3)λ3)
−ǫ ,

with the d-dimensional solid angle

Ωd =
2πd/2

Γ(d/2)
. (3.6)

In the presence of a cut on the lepton energy y > y0, the transformation

y = (1− ρ− y0)λ1+ y0 maps the integration to the unit cube. It is simple to obtain

the tree-level phase space from (3.5). To this end, one multiplies with 2πδ(p2
x − m2

c) =

2πδ
(

m2
b(1 − ρ − y)λ2

)

and integrates over λ2.

3.2 Two-body phase space x → c + g

We split the gluon three-momentum into a part in the direction of ~px and an orthogonal part

pg = (Eg, 0, 0, 0) + Eg cos θ2

(

0,
~px

|~px|

)

+ Eg sin θ2 (0, ~p⊥) (3.7)

with ~p⊥ · ~px = 0 and ~p2
⊥ = 1. Expressed in terms of these quantities, the two-body phase

space is
∫

[dΠx→c+g] =
1

2(2π)d−2

∫

d cos θ2

sind−4θ2 Ed−2
g

p2
x − m2

c

∫

dd−2p⊥ . (3.8)

For a given angle θ2, the gluon energy is

Eg =
p2

x − m2
c

2(Ex − cos θ2|~px|)
. (3.9)

Note that the denominators of the real-emission diagrams

(pb − pg)
2 − m2

b = −2mbEg , (3.10)

(pc + pg)
2 − m2

c = p2
x − m2

c (3.11)
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are independent of p⊥. The only dependence on p⊥ arises from the scalar products with

lepton momenta in the numerator of the diagrams. The integration over the unit vector

p⊥ is therefore trivial. The only non-vanishing integrals we need are

∫

dd−2p⊥

{

1, pi
⊥pj

⊥

}

=

{

1,
1

d − 2
δij

}

Ωd−2 , (3.12)

where δij is the metric on the (d − 2)-dimensional sub-space, with δi
i = d − 2. For the

evaluation of the diagrams it is simplest to parameterize the vector p⊥ as

p⊥ = sin θ3 (0, 0, 1, 0) + cos θ3
1

|~px|
(0, Eν cos θ1 + El, 0,−Eν sin θ1) . (3.13)

The integrand is then a second-order polynomial in cos θ3 and sin θ3 and the integral over

p⊥ takes the form

∫

dd−2p⊥

{

1, cos2 θ3

}

= Ωd−3

∫ 1

−1
d cos θ3 sind−5θ3

{

1, cos2 θ3

}

= Ωd−2

{

1,
1

d − 2

}

.

(3.14)

To calculate the rate, we combine (3.5) with (3.8) and (3.14) and rewrite cos θ2 = 2λ4 − 1.

The point λ2 = 0 corresponds to the kinematic configuration where soft singularities

occur, since Eg ∝ p2
x − m2

c = m2
b(1 − ρ − y)λ2 → 0. Both propagator denominators (3.10)

and (3.11) are proportional to λ2 and vanish at this point. The phase space (3.8) itself is

proportional to λ1−2ǫ
2 so that the infrared divergences take the form

1

λ1+2ǫ
2

= − 1

2ǫ
δ(λ2) +

[

1

λ2

]

+

+ O(ǫ) . (3.15)

The above relation is easily implemented into the code for the numerical evaluation of the

diagrams. We evaluate both the divergent and the finite part numerically and check that

the 1/ǫ divergences cancel in the final result within our numerical accuracy.

3.3 Loop integrals

The virtual corrections involve loop integrals

{I, Iµ, Iµν} =

∫

ddk
{1, kµ, kµkν}

k2 (2pb · k + k2) (2pc · k + k2 + p2
c − m2

c)
(3.16)

with p2
b = m2

b . We need the loop integrals for p2
c 6= m2

c because we replace pµ
c → pµ

c +rµ and

then expand in the residual momentum rµ. The Feynman parameterization of the integral

has the form

{I, Iµ, Iµν} = iπd/2Γ(1 + ǫ)

∫ 1

0
du dv v ∆−1−ǫ (3.17)

{

−1, v (upµ
b + ūpµ

c ),−v2 (upµ
b + ūpµ

c )(upν
b + ūpν

c ) +
1

2ǫ
∆ gµν

}
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1 αs

π
µ2

π

2m2

b

αs

π
µ2

π

2m2

b

%

1 0.6319(4) −1.123(4) −0.6319(6) 1.125(8) 0.1

Êl 0.1941(1) −0.348(1) 0.0000(3) 0.000(3) 0.

Ê2
l 0.06509(5) −0.1186(5) 0.1085(1) −0.198(1) −0.2

Ê3
l 0.02308(2) −0.0429(2) 0.09232(5) −0.1714(7) −0.5

Êx 0.2667(2) −0.454(2) −0.6319(2) 1.124(3) 0.3

Ê2
x 0.11576(9) −0.1845(9) −0.3667(1) 0.610(2) 0.4

Ê3
x 0.05148(4) −0.0744(4) −0.17468(6) 0.2534(8) 0.4

(p̂2
x − ρ) 0 0.05693(3) −0.7305(2) 1.281(3) −41.

(p̂2
x − ρ)2 0 0.005754(3) 0.20337(5) −0.5712(9) −19.4

(p̂2
x − ρ)3 0 0.0011438(6) 0 0.036918(7) 23.4

Êx(p̂2
x − ρ) 0 0.02970(2) −0.20013(6) 0.2544(8) 47.2

Êx(p̂2
x − ρ)2 0 0.003373(2) 0.09285(2) −0.2455(4) −17.1

Ê2
x(p̂2

x − ρ) 0 0.015856(8) −0.03570(2) −0.0208(3) −1.8

Table 1: Coefficients of the perturbative and power corrections to the moments (4.1) without a

cut on the lepton energy for mc/mb = 1/4. Perturbative corrections are given in units of αs/π, the

power corrections in units of µ2
π/(2m2

b). All entries need to be multiplied by the common factor

G2

F |Vcb|2m5

b/(192π3). The numbers in the table correspond to the partonic moments in the pole

scheme. The last column gives the relative size of the kinetic O(αs) corrections for default values

of the parameters, see text.

with ū = 1 − u and

∆ = v2
[

m2
bu

2 + m2
c ū

2 + 2pb · pcūu
]

+ v ū (1 + ūv)
(

m2
c − p2

c

)

. (3.18)

Since we expand around the mass shell, the integral over the Feynman parameter v can

always be done analytically after expanding, because the v integration completely factors

after setting p2
c = m2

c . For the scalar integral, the v integration produces 1/ǫ infrared

divergences. The u integration on the other hand is always finite and done numerically,

together with the integration over the tree-level phase space.

4. Results for the moments of the differential rate

When doing the calculation, it is simplest to evaluate moments using partonic variables. To

distinguish partonic and hadronic quantities, we denote the partonic energy and invariant

mass by Ex and p2
x, while writing EX and p2

X in the hadronic case. For the tree-level

diagrams Ex is the energy of the charm quark, while in the diagrams where a gluon is

emitted Ex = Ec + Eg. The partonic moments for which we present results in tables are

defined as

[

w(El, Ex, p2
x)

]

=

∫ Emax

E0

dEl

∫

dEx dp2
x

dΓ

dEx dp2
x dEl

w(El, Ex, p2
x) . (4.1)
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1 αs

π
µ2

π

2m2

b

αs

π
µ2

π

2m2

b

%

1 0.5149(3) −0.910(3) −0.5692(6) 0.987(8) 0.1

Êl 0.1754(1) −0.314(1) 0.0109(3) −0.024(3) 0.

Ê2
l 0.06189(5) −0.1128(5) 0.1105(1) −0.202(1) −0.2

Ê3
l 0.02251(2) −0.0418(2) 0.09269(5) −0.1722(7) −0.6

Êx 0.2111(1) −0.365(1) −0.5694(2) 1.010(3) 0.4

Ê2
x 0.08917(7) −0.1482(7) −0.3378(1) 0.576(1) 0.5

Ê3
x 0.03867(4) −0.0606(4) −0.16898(6) 0.2639(7) 0.5

(p̂2
x − ρ) 0 0.03618(2) −0.6855(2) 1.213(2) −25.5

(p̂2
x − ρ)2 0 0.002808(2) 0.15198(4) −0.4388(5) −21.6

(p̂2
x − ρ)3 0 0.0004053(3) 0 0.020998(4) 32.9

Êx(p̂2
x − ρ) 0 0.01801(1) −0.20707(6) 0.2961(8) −39.2

Êx(p̂2
x − ρ)2 0 0.0015307(10) 0.06794(2) −0.1897(3) −20.1

Ê2
x(p̂2

x − ρ) 0 0.009147(6) −0.05271(2) 0.0304(3) 12.4

Table 2: Coefficients of the perturbative and power corrections to the the moments (4.1) with

4.6Êl > 1 and mc/mb = 1/4. Perturbative corrections are given in units of αs/π, the power

corrections in units of µ2
π/(2m2

b). All entries need to be multiplied by the common factor

G2

F |Vcb|2m5

b/(192π3). The numbers in the table correspond to the partonic moments in the pole

scheme. The last column gives the relative size of the kinetic O(αs) corrections for default values

of the parameters, see text.

We consider lepton energy moments w = Ên
ℓ = (Eℓ/mb)

n with n = 1 . . . 3 and the partonic

energy and invariant mass moments w = Ên
x (p̂2

x − ρ)m with n + m ≤ 3 and ρ = m2
c/m

2
b .

Note that we do not normalize the partonic moments to the rate.

Numerical results for the moments without a cut and with a cut Êℓ > 1/4.6 (cor-

responding to Eℓ > 1.0GeV for mb = 4.6GeV) are shown in tables 1 and 2 for√
ρ = mc/mb = 1/4. In the last column, we indicate the relative size of the kinetic O(αs)

corrections. To estimate the relative size we use αs ≡ αs(mb) = 0.22 and µ2
π = 0.4GeV2. As

explained in section 2, we calculate the moments with two different methods and check that

the results agree within numerical precision. In the tables, we also include numerical results

for the tree-level moments. Using (2.20) it would be simple to evaluate them analytically.

The one-loop kinetic corrections are small for the moments which get contributions

at leading power but sizable for the moments of (p̂2
x − ρ)n. For example, the moment of

p2
x − ρ, gets a correction of −40%. Compared to the tree-level contributions of the kinetic

operator, the one-loop terms are typically suppressed by a few times αs/π. We thus expect

that the extracted value of µ2
π will be shifted by about ±20% by their presence. Given

the size of the kinetic corrections to the rate, we do not expect that the O(αs) corrections

will affect the extracted value of |Vcb|. In the fit of ref. [16] the value of µ2
π is varied by

±20% to estimate the theoretical uncertainty. The corrections we calculate are indeed of
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1 v w v2 w2 v w

1 0.860 −1.385 0.453 −1.216 −1.463 −0.064

Êl −0.056 −0.007 0.025 −0.342 −0.478 −0.012

Ê2
l −0.210 0.335 −0.170 −0.098 −0.153 −0.002

Ê3
l −0.174 0.331 −0.210 −0.029 −0.048 0.000

ÊX 0.938 −1.356 0.413 −0.640 −0.624 −0.011

Ê2
X 0.553 −0.598 0.006 −0.212 −0.221 −0.172

Ê3
X 0.264 −0.172 −0.095 −0.013 −0.058 −0.192

(p̂2
X − ρ) 1.191 −1.787 0.706 −0.182 −0.086 0.009

(p̂2
X − ρ)2 −0.39 0.745 −0.476 0.392 0.188 −0.449

(p̂2
X − ρ)3 0.017 −0.046 0.05 −0.033 −0.001 0.068

ÊX(p̂2
X − ρ) 0.314 −0.25 −0.109 0.136 0.063 −0.267

ÊX(p̂2
X − ρ)2 −0.169 0.278 −0.126 0.165 0.081 −0.146

Ê2
X(p̂2

X − ρ) 0.050 0.067 −0.125 0.153 0.068 −0.195

Table 3: Dependence of the coefficient of αs

π

µ2

π

2m2

b

of the moments (4.1) on the lepton-energy cut

and the charm-quark mass. We define v ≡ 4mc/mb − 1 and w ≡ (4E0 − mb)/mb and expand

the moments to second order in these variables. The expansion coefficients in the table were

determined by performing a quadratic fit to the exact results in the range 0.2 ≤ mc/mb ≤ 0.3 and

0.5 ≤ 4.6 Ê0 ≤ 1.6.

this size, except that varying the value of µ2
π correlates the change in all moments, while

the perturbative corrections are different in each case. In the fit of [15], the corrections

are underestimated to be αs

4πΛ2
QCD/m2

b ∼ 0.0002: the contributions we find are roughly ten

times larger.

In table 3 we give the result for the one-loop kinetic corrections as a function of the

cut energy E0 and the ratio ρ = m2
c/m

2
b . To this end, we perform a quadratic fit around

default values mc/mb = 1/4 and E0 = mb/4 ≈ 1.15GeV. The accuracy of the quadratic

fit is a few per cent except in cases where the corrections become very small. Tables with

precise numerical results for arbitrary cut energies and charm-mass values can be obtained

from the authors.

Instead of the partonic moments, experimental papers present results for the normal-

ized hadronic moments

〈

w(El, EX , p2
X)

〉

=
1

Γ(El > E0)

∫ Emax

E0

dEl

∫

dEX dp2
X

dΓ

dEX dp2
X dEl

w(El, EX , p2
X) . (4.2)

To translate the results to hadronic kinematics we note that leptonic quantities are identical

on the hadronic and partonic level. Using that the B-meson momentum is pµ
B = MB vµ, it

follows that

EX = MB − v · q = MB − mb + Ex , (4.3)

p2
X = (pB − q)2 = p2

x + 2Ex(MB − mb) + (MB − mb)
2 . (4.4)
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With these two equations, it is straightforward to translate our partonic results into

hadronic language. For example, the prediction for the lowest moments are obtained from

the relations

〈Eℓ〉 =
1

[1]
mb

[

Êℓ

]

,

〈EX〉 =
1

[1]

(

mb

[

Êx

]

+ (MB − mb) [1]
)

, (4.5)

〈p2
X − M2

D〉 =
1

[1]

(

m2
b

[

p̂2
x−ρ

]

+2mb(MB − mb)
[

Êx

]

+((MB−mb)
2+(m2

c−M2
D)) [1]

)

.

The moment with unit weight function is the rate: [1] = Γ(Eℓ > E0), see (4.1). While the

moments of p2
x − m2

c vanish at tree level in the heavy-quark limit, the hadronic moments

p2
X − M2

D are nonzero. Using the above conversion formulae together with the results in

table 2 we obtain for example

〈p2
X − M2

D〉 =

[

0.860 + 1.59
αs

π
+

(

−32.3 + 1.96
αs

π

) µ2
π

2m2
b

]

GeV2 , (4.6)

〈(p2
X − M2

D)2〉 =

[

0.939 + 7.00
αs

π
+

(

117.4 − 178.2
αs

π

) µ2
π

2m2
b

]

GeV4 . (4.7)

Finally, let us note that we performed our calculation in the pole scheme, but it is

simple to convert our result into different schemes. The pole scheme is calculationally most

convenient, but plagued by large higher-order corrections. The problem arises because the

definition of the parameters in this scheme relies on on-shell quark states, a concept not

meaningful beyond perturbation theory. The resulting bad perturbative behavior can be

improved by using parameter definitions with less infrared sensitivity such as MS quark

masses. This is appropriate for the charm quark which we treat as light, however, the MS

mass definition is not suitable for the b-quark, because it is not consistent with HQET

power counting. A number of alternative schemes, appropriate for heavy-quark processes,

are available: they include the kinetic [41], the potential-subtracted [42], the 1S [43] and

the shape-function scheme [44]. To one-loop order, the scheme changes from the pole into

the new schemes have the form

mb = mb(µf ) + µf
αs

π
c1 +

µ2
f

2m2
b

αs

π
c2 , µ2

π = µ2
π(µf )

(

1 +
αs

π
c3

)

+ µ2
f

αs

π
c4 , (4.8)

where coefficients ci depend on the scheme. For example, in the kinetic scheme c1 = 4
3 CF ,

c2 = CF , c3 = 0, c4 = CF and µf = 1GeV. The exact choice of the factorization scale

µf is a matter of convention. When performing the moment fit, it is worthwhile to check

to what extent the fit results are independent of this choice. A compendium of two-loop

scheme conversion formulae can be found in [48]. Let us note that only the kinetic and the

shape-function scheme provide improved definitions for the parameter µ2
π. To obtain the

scheme change to O(αs) one simply replaces the pole-scheme parameters by the redefined

ones in our one-loop results. Additional O(αs) corrections are generated when performing

the scheme change in the tree-level results. We refrain here from explicitly changing the

scheme, but the default values of our parameters are chosen such that they correspond to

values which are typical for the improved schemes.
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5. Summary and conclusion

We have evaluated the one-loop perturbative corrections to the coefficient of the kinetic

operator in the operator product expansion of the decay B̄ → Xcℓν̄. The corrections are

typically (1 − 3) × αs

π ≈ 10 − 30% times the leading kinetic power correction. We thus

expect that these corrections will change the extracted value of µ2
π from the moment fit by

about 20%. Whether this in turn has an effect on the extracted mb and mc values is hard

to estimate without performing the global fit. Since the kinetic corrections are very small

for the total rate, the value of |Vcb| will likely not be affected.

With the same numerical methods used here the one-loop chromo-magnetic and the

two-loop leading-power corrections can be calculated as well. Once these are known, the

theoretical precision on the predictions for the B̄ → Xcℓν̄ decay will be superior to the ex-

perimental accuracy. These results will increase the precision of the extracted parameters

and provide a nontrivial consistency check on the experimental data used in the fit. The

calculation will also answer the question whether the currently used theoretical error esti-

mates on the extracted parameters are realistic. This is of particular importance because

the value and uncertainty of mb is a crucial input in the determination of |Vub| from the

inclusive B̄ → Xuℓν̄ decay.
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A. Moment relations

Without cuts on the available phase space, the kinetic corrections to the moments are

directly related to the leading-power moments. The relations can be derived from the

general result (2.20). For convenience, we list here the explicit form of the relations for the

moments we are interested in. We write the relations as A ≡ B which should be read as

∫

dEldEx dp2
x

dΓ

dEx dp2
x dEl

A =

∫

dEldEx dp2
x

dΓpartonic

dEx dp2
x dEl

B . (A.1)

For the energy moments the relations read

Eℓ ≡ Eℓ , E2
ℓ ≡

(

1 +
5

3

µ2
π

2m2
b

)

E2
ℓ ,

E3
ℓ ≡

(

1 + 4
µ2

π

2m2
b

)

E3
ℓ , Ex ≡ Ex − µ2

π

2m2
b

, (A.2)

E2
x ≡ E2

x +
µ2

π

2m2
b

(

−2

3
p2

x +
5

3
E2

x − 2Exmb

)

, E3
x ≡ E3

x +
µ2

π

2m2
b

(

4E3
x − 3E2

xmb − 2p2
xEx

)

,
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and for the partonic invariant mass moments the relations are

p2
x ≡ p2

x +
µ2

π

2m2
b

(

−p2
x + 2Exmb − 2m2

b

)

,

(p2
x)2 ≡ (p2

x)2 +
µ2

π

2m2
b

(

−(p2
x)2 + 4Exp2

xmb −
20

3
p2

xm2
b +

8

3
E2

xm2
b

)

,

(p2
x)3 ≡ (p2

x)3 +
µ2

π

2m2
b

(

−(p2
x)3 + 6Ex(p2

x)2mb − 14(p2
x)2m2

b + 8E2
xp2

xm2
b

)

,

Exp2
x ≡ Exp2

x +
µ2

π

2m2
b

(

−7

3
p2

xmb +
10

3
E2

xmb − 2Exm2
b

)

, (A.3)

Ex(p2
x)2 ≡ Ex(p2

x)2 +
µ2

π

2m2
b

(

−11

3
(p2

x)2mb +
20

3
E2

xp2
xmb −

20

3
Exp2

xm2
b +

8

3
E3

xm2
b

)

,

E2
xp2

x ≡ E2
xp2

x +
µ2

π

2m2
b

(

−2

3
(p2

x)2 +
5

3
E2

xp2
x − 14

3
Exp2

xmb +
14

3
E3

xmb − 2E2
xm2

b

)

.
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